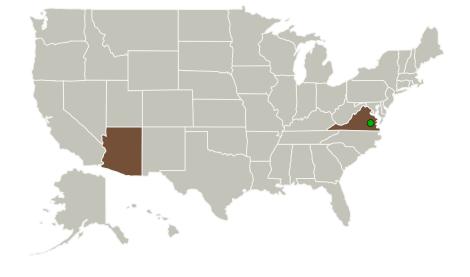
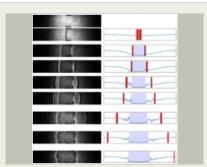
Energy-Deposition to Reduce Skin Friction in Supersonic Applications, Phase II




Completed Technology Project (2014 - 2018)

Project Introduction

NASA has drawn attention to an impending need to improve energy-efficiency in low supersonic ($M < \sim 3$) platforms. Aerodynamic efficiency is the foundation of energy-efficient flight in any regime, and low drag is one of the fundamental characteristics of aerodynamic efficiency. For supersonic aircraft, drag can be broadly decomposed into four components: viscous or skin friction drag, lift-induced drag, wave or compressibility drag, and excrescence drag. The relative impact of these four drag forces depends upon vehicle-specific characteristics and design. However, viscous skin friction drag stands out as particularly significant across most classes of flight vehicles. Therefore, effective techniques to reduce skin friction drag on a vehicle will have a major and far-reaching impact on flight efficiency for low supersonic aircraft. In an effort to address the need for increased aerodynamic efficiency of low supersonic vehicles, PM&AM Research, in collaboration with Texas A&M University, propose to build upon our successful Phase I effort to mature/develop our novel energy deposition technologies, using basic, welldemonstrated energy-deposition techniques along the surface in supersonic flow to control/compress/forcibly-move the boundary layer fluid by creating a low-density "bubble-like" region, thereby reducing the viscous skin friction. Once matured, this solution will reduce the drag experienced by a low supersonic platform, allowing vehicles to exhibit increased aerodynamic efficiency.

Primary U.S. Work Locations and Key Partners

Energy-Deposition to Reduce Skin Friction in Supersonic Applications, Phase II

Table of Contents

Project Introduction	1
Primary U.S. Work Locations	
and Key Partners	1
Project Transitions	2
Images	2
Organizational Responsibility	2
Project Management	2
Technology Maturity (TRL)	2
Technology Areas	3
Target Destinations	3

Small Business Innovation Research/Small Business Tech Transfer

Energy-Deposition to Reduce Skin Friction in Supersonic Applications, Phase II

Completed Technology Project (2014 - 2018)

Organizations Performing Work	Role	Туре	Location
Physics, Materials, and Applied Mathematics Research, LLC	Lead Organization	Industry	Tucson, Arizona
Langley Research Center(LaRC)	Supporting Organization	NASA Center	Hampton, Virginia

Primary U.S. Work Locations	
Arizona	Virginia

Project Transitions

U

April 2014: Project Start

December 2018: Closed out

Closeout Documentation:

• Final Summary Chart(https://techport.nasa.gov/file/137629)

Images

Briefing Chart Image

Energy-Deposition to Reduce Skin Friction in Supersonic Applications, Phase II (https://techport.nasa.gov/imag e/126554)

Organizational Responsibility

Responsible Mission Directorate:

Space Technology Mission Directorate (STMD)

Lead Organization:

Physics, Materials, and Applied Mathematics Research, LLC

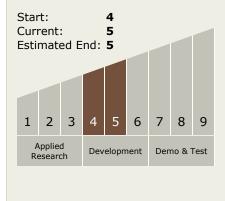
Responsible Program:

Small Business Innovation Research/Small Business Tech Transfer

Project Management

Program Director:

Jason L Kessler

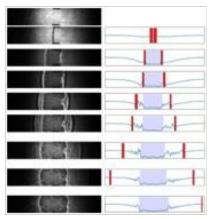

Program Manager:

Carlos Torrez

Principal Investigator:

Kevin Kremeyer

Technology Maturity (TRL)



Small Business Innovation Research/Small Business Tech Transfer

Energy-Deposition to Reduce Skin Friction in Supersonic Applications, Phase II

Completed Technology Project (2014 - 2018)

Final Summary Chart Image Energy-Deposition to Reduce Skin Friction in Supersonic Applications, Phase II (https://techport.nasa.gov/imag e/128614)

Technology Areas

Primary:

TX15 Flight Vehicle Systems
 □ TX15.1 Aerosciences
 □ TX15.1.1 Aerodynamics

Target Destinations

The Moon, Mars, Outside the Solar System, The Sun, Earth, Others Inside the Solar System

